Competitiveness, human factors, and the social nature of knowledge

Vince Kellen
Vice President, Information Systems
DePaul University

Instructor
College of Computer Science, Telecommunications and Information System
February, 2005
Five main sources for this discussion

1. Resource-based view (RBV) of the firm (various)
2. Complex adaptive systems, chaos theory (Santa Fe Institute)
5. The writings of Chris Argyris on organizational learning
Introvert approach to strategy

• Resource-based view (RBV) of the firm, dynamic capabilities approach (DCA)

• Firms compete on resources and capabilities
 – Resources are assets, tangible (sometimes intangible)
 – Capabilities are a capacity to deploy resources, know-how
 • Functional capabilities deepen specific knowledge
 • Integrative capabilities combine functional capabilities and absorb external knowledge (what is the role of management information systems?)
 • Firms gain access to resources and capabilities through networks (or relationships). Managing this network may be considered a capability.
 • Capabilities and resources are not singular items considered in isolation. They interact with each other and comprise a complex system
 • Capabilities and resources which are non-tradable, rare, inimitable or non-substitutable can be a source of competitive advantage
 – Rare, inimitable, non-substitutable resources are increasingly tough to find
 – What about rare, inimitable, non-sustainable capabilities?
Complexity

- The process of developing capabilities is *complex* and results in uncertainty and path-dependency
- Capability development is a form of long-term organizational learning
- Emergent and chance events shape this process
- The value of knowledge varies sometimes unpredictably depending on environment/market conditions
- Developing a standard model (normative, prescriptive frameworks) for capability improvement is not likely due to process and system complexity
 - If a normative model existed, what would happen to the market?
Chaos theory, CAS terms

• Planning horizon
 – 6 months? 1 year? 3 years? In uncertain environments it is likely to be shorter
 – In totally chaotic environments chance and planning are equal
 – The more complex the environment, the less useful is long-term strategic planning

• Knowledge of the landscape and features
 – In chaotic environments, one may not even know all the features. Who is a competitor? Who is a partner?
 – Actions deform the landscape, unpredictably: perpetual novelty

• Agents, artifacts, generative relationships
 – Agents: an individual, a team, a business unit, a company, a virtual enterprise, a value chain
 – Artifacts: products, brands, communications
 – Generative relationships: interactions between agents that create value
 – Agents collectively modify the landscape: artifacts, attributes of artifacts, terms, concepts and this reforming/deforming define/create opportunity recursively
 – Windows of opportunities in quickly reforming markets are short

From “Foresight, Complexity and Strategy,” David Lane and Robert Maxfield. Santa Fe Institute
Customers and complexity

- While an introverted view may be warranted, a competency that is emerging as significant is knowledge of market opportunities. This is different than knowledge of product engineering.

- Markets are collections of customers. Customers demonstrate their power in making choices. Customers’ choice-making is increasing in power.
 - Commoditization of complex manufacturing, imitable globally.
 - Information is abundantly available.
 - Diversity of choices due to many providers is giving customers more choices.
 - Diversity of choices increases consumption and overall market opportunity (post-modern consumerism).
 - Knowledge of customer choices is a key capability.
 - This capability is focused on external information.

- Systems, data and information is the overwhelming means by which this integrative capability is executed.
What does a customer choose?

- Offerings. Which have the following attributes:
 - An identity, attributes, weights (importance) and levels
 - Associated offerings
- Other terms
 - Agents can be customers or producers
 - O is an offering as intended by an agent
 - O' is an offering as desired by an agent
 - All versions of O and O' can be collectively referred to as an offering
- Offerings propagate and mutate
 - Offerings are not simply copied. They may change as they are communicated. For example, as a customer begins to be more involved in a product category, their desired offering begins to change. Experience with an offering, either while searching for it, buying it or using it, can change O'.
 - Similar terms: replicate, select
An offering

- **Price**: $5
- **Color**: Yellow (Yel)
- **Attribute Identity**: Yield
- **Attribute Level**: High
- **Attribute Importance**: Sperlunk -3
- **Offering Identity**: Acme Widget
An agent can be either a buyer or seller. An interaction is any form of communication between agents regarding \(O \) or \(O' \). When an agent selects \(O \) or \(O' \), the offering is said to have propagated. As a result of the interaction (which may involve selection), \(O \) and \(O' \) may undergo change (mutation).
Customers talk to each other, too

Word-of-mouth, chat, e-mail, phone, propagate O’, causing drift away from O. Community management was an attempt in the early days of the Internet to influence this dynamic. Viral marketing, PR and other surreptitious marketing techniques continue the efforts.
The customer experience space

Offerings compete and mutate with each other for maximal propagation
An analogy

• Offerings can be considered memeplexes that:
 – Compete with each other for maximal propagation
 – Mutate with each other for maximal propagation

• If so, than producers do not design offerings.
 – Instead, producers and customers co-create memeplexes as a byproduct of selection or propagation. This co-creation process creates successful memeplexes that emerge serendipitously.

• This co-creation process leads to increased complexity in memeplexes which leads to unprecedented choice for customers and untapped knowledge for producers. It also creates perpetual novelty. With each turn of propagation, opportunity is created to redesign O for better propagation (since O' has changed). Selecting O changes O' and perhaps O.
Knowledge management

• Dominant view of knowledge management
 – Tacit knowledge; conversion to explicit; storage, retrieval and diffusion of explicit knowledge
 – Focus on the production versus consumption of knowledge
 – How is knowledge produced? (innovation)
 – Knowledge can be managed

• Some reactions to the dominant view
 – Knowledge grows via a series of unplanned, indeterminate interactions between people
 – Knowledge is acted upon in tacit form without full awareness or validity
 – Learning is fraught with difficulties
 • Cognitive biases, organizational and individual defensiveness
 – Knowledge can’t be managed
The technologist’s view of knowledge management

• Catalog
 – Identify data, documents, build a taxonomy (by hand or driven from the data)
 – Collect documents and maintain a collection scheme
 – Convert documents, add metadata

• Store and search
 – Data warehousing, data movement (ETL, MOM)
 – Knowledge bases (Verity, Autonomy, etc.) with advanced searching algorithms
 – Index services for simpler searching
 – Search engine aggregation (Copernic.com)

• Disseminate
 – Create an intranet site or a portal and personalize it
 – Sit back and wait
The manager’s view of tacit knowledge

• Knowledge and skill, inside people’s heads, can generate results
 – Knowledge
 • Geniuses convert their knowledge to written form, often using the language of math for reliable diffusion of knowledge
 – Skill
 • Geniuses often do not know how they do what they do, nor can they reliably teach others how they themselves excel

• To gather knowledge
 – Interview, work alongside of, or observe the domain experts
 – Use data mining to glean knowledge from data
 – Meta-studies

• To improve skill
 – Apprenticeship programs, training, planned work experiences
Knowledge and behavior

• Can you see someone acquire knowledge when it occurs?
 – Knowledge must lead to observable behavior change that can be linked to business success.
 – Learning occurs when people produce what they say they know (C. Argyis)

• Two forms of behavior change: intrinsic and coerced
 – Coerced behavior change
 • “We will pay you more if you do X”
 • “We will accept you in the group if you behave in following X ways”
 – Intrinsic behavior change
 • “I want to earn more money, so I will do X”
 • “In the name of my religious beliefs, I will do X”
 • “I want to rule the earth and coerce others, so I will do X”
 – Questions
 • Is it easier to acquire knowledge or get knowledge acted upon with coercion?
 • Is intrinsically motivated behavior better? Is it harder to get the behavior started or stopped?
Knowledge chain or knowledge network?

Identify → Catalog → Store → Distribute

Or

What is the precise sequence of interactions that produces the knowledge needed by the organization? What comprises the interactions? Can you repeat the sequence each time? What rules govern the sequence?
Some thoughts (from Stacey, Thomas et al)

- Knowledge is intertwined with human cognition and social context
- Knowledge is created through a complex, emergent system of richly interconnected processes
- The production line metaphor of knowledge being created, then captured, then disseminated, and then internalized can be quite misleading as an overall scheme for knowledge management
- Systems, databases, recorded and written artifacts are usually thought of as stores of knowledge. They are simply records that can only become knowledge when people use them as tools in their processes of gesturing and responding to each other. What is captured in these artifacts is inevitably something about the meanings of social acts already performed. Since a social act is ephemeral and since knowledge is social acts, it can never be stored or captured.
- Knowledge is the act of conversing and new knowledge is created when ways of talking, and therefore patterns of relationship, change. Knowledge, in this sense, cannot be stored, and attempts to store it in artifacts of some kind will capture only its more trivial aspects.
- Organizational change, learning, and knowledge creation are the same as change in communicative interaction, whether people are conscious of it or not.
Stacey’s criticisms

- Systems thinking does not sufficiently explaining how knowledge emerges as tacit knowledge (which is the basis for skill). All major writers assume that something can be reliably done to create knowledge; that there is a “designer” to the system, that a method can be followed
- Knowledge does emerge, unpredictably, from a collection of diverse, richly connected agents that engage in interactions, without the aid of a “designer” or a “blueprint”
- Gesture, social structure and culture, play the significant role
- The individual, the group, the organization, and the society are at the same ontological level: they are the same “thing.” They engage in a circular, unplanned series of interactions that create knowledge
- Knowledge cannot be stored. It is alive in these interactions. It also cannot be engineered or planned. It emerges…

Explain that to your boss!
In this view, is knowledge creation, as a business activity, easily imitated?
Knowledge management and performance measurement

- Business performance measurement (BPM) is a curious subset of knowledge management
- Some examples include:
 - Balanced scorecards (BSC)
 - Economic Value Add (EVA), Activity-Based Costing
 - TQM, ISO, Baldridge and other Quality Programs rely on process measurement, which can be included in BPM
- Since it is usually closely tied with behavior and learning agendas via compensation and performance reviews, perhaps this is the real knowledge that needs to be managed
- BPM is still relatively new, with some strong support in the market (e.g., BSC), a bit of supporting empirical evidence, and plenty of issues
Problems with BPM

- Adoption rates, while heavy in the Fortune 1000 (40% use BSC), drop sharply in small and medium-sized businesses.
- Data quality is often poor. Endemic to data warehouses and many ERP systems, bad data undermines trust and use in a BPM system.
- Not all measures are good ones. Two things are needed: a proper strategy and the metrics linked to the strategy.
- Metrics need switching out. About 33% of metrics change each year. Reasons: changes in strategy, metrics being “run down” due to optimization or circumventing the system (changing metrics without improving performance, suppressing data when differences persist).
- Key external (customer) metrics may be difficult to acquire or validate.
- Coherence issues: metrics must align laterally across functional units and vertically from executive management to front-line employees.
- Decisions based on data problems may be faulty (heuristics and biases) due to limits of human cognition.
- Defensive reasoning can deny any explicit knowledge.
Knowledge management and metaphor

- The conversion of data into personal knowledge can be aided greatly using metaphor and visualization
- Is all cognition grounded in perceptual and performance (kinesthetic) schemas rather than arbitrary symbolic code?
 - Some neuroscientists would say yes

<table>
<thead>
<tr>
<th>Metaphor</th>
<th>Abstract Schema</th>
<th>Concrete Schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important is big</td>
<td>Significance in situation</td>
<td>Seen/felt size</td>
</tr>
<tr>
<td>Difficulties are burdens</td>
<td>Obstacle to intention</td>
<td>Felt weight</td>
</tr>
<tr>
<td>More is up</td>
<td>Quantity or degree</td>
<td>Seen or felt elevation</td>
</tr>
<tr>
<td>Categories are containers</td>
<td>Classification</td>
<td>Seen or felt containment</td>
</tr>
<tr>
<td>Similarity is closeness</td>
<td>Diagnostic/predictive similarity</td>
<td>Seen or felt proximity</td>
</tr>
<tr>
<td>Help is support</td>
<td>Assistance toward intention</td>
<td>Felt firmness underneath</td>
</tr>
<tr>
<td>Time is motion</td>
<td>Passage of time</td>
<td>Seen/felt movement</td>
</tr>
<tr>
<td>States are locations</td>
<td>Situational equivalence</td>
<td>Seen/felt place</td>
</tr>
<tr>
<td>Change is motion</td>
<td>Variation over time</td>
<td>Seen/felt movement</td>
</tr>
<tr>
<td>Action is self-propulsion</td>
<td>Autonomous activity</td>
<td>Intentionial movement</td>
</tr>
<tr>
<td>Purposes are desired objects</td>
<td>Intention</td>
<td>Reinforcing object</td>
</tr>
<tr>
<td>Causes are physical forces</td>
<td>Causes and origins</td>
<td>Felt pressure and weight</td>
</tr>
<tr>
<td>Relationships are enclosures</td>
<td>Relational dependency</td>
<td>Seen/felt enclosure</td>
</tr>
<tr>
<td>Controlling is being above</td>
<td>Causal dependency</td>
<td>Vertical alignment</td>
</tr>
<tr>
<td>Seeing is understanding</td>
<td>Knowledge</td>
<td>Objects seen</td>
</tr>
<tr>
<td>Understanding is grasping</td>
<td>Knowledge and comprehension</td>
<td>Objects actively felt</td>
</tr>
</tbody>
</table>

Factors where visualization aids in processing data

<table>
<thead>
<tr>
<th>Type of Aid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel perceptual processing</td>
<td>Some attributes of visualizations can be processed in parallel compared to text.</td>
</tr>
<tr>
<td>Offload work from cognitive to perceptual system</td>
<td>Some cognitive inferences done symbolically can be recoded into inferences done with simple perceptual operations.</td>
</tr>
<tr>
<td>Expanded working memory</td>
<td>Visualizations can expand the working memory available for solving a problem.</td>
</tr>
<tr>
<td>Expanded storage of information</td>
<td>Visualizations can be used to store massive amounts of information in a quickly accessible form (e.g., maps).</td>
</tr>
<tr>
<td>Locality of processing</td>
<td>Visualizations group information used together, reducing searching.</td>
</tr>
<tr>
<td>High data intensity</td>
<td>Visualizations can often present a large amount of data in a small space.</td>
</tr>
<tr>
<td>Spatially indexed addressing</td>
<td>By grouping data about an object, visualizations can avoid symbolic labels.</td>
</tr>
<tr>
<td>Recognition instead of recall</td>
<td>Recognizing information generated by a visualization is easier than recalling that information by that user.</td>
</tr>
<tr>
<td>Abstraction and aggregation</td>
<td>Visualizations simplify and organize information, supplying higher centers with aggregated forms of information through abstraction and selective omission.</td>
</tr>
<tr>
<td>Visual representations make some problem obvious</td>
<td>Visualizations can support a large number of perceptual inferences that are extremely easy for humans.</td>
</tr>
<tr>
<td>Perceptual monitoring</td>
<td>Visualizations can allow for the monitoring of a large number of potential events if the display is organized so that these stand out by appearance or motion.</td>
</tr>
<tr>
<td>Manipulable medium</td>
<td>Unlike static diagrams, visualizations can allow exploration of a space of parameter values and can amplify user operations.</td>
</tr>
</tbody>
</table>

Organizational defensiveness (following Argyris)

- Reasoning is the process people use to move from thought to action. Two forms of reasoning: defensive, productive

- Defensive reasoning
 - Premises for causal reasoning are tacit, not made explicit
 - Inference process that takes people from premise to conclusion are tacit
 - Data used to generate premises, conclusions are not subject to verification
 - The logic used to test conclusions is same as that used to produce them
 - Defensive reasoning is practiced and skilled. People practice it without thinking. It is a form of tacit knowledge. Positive values are ascribed to defensive reasoning
 - Defensive reasoning is self-serving, anti-learning and overprotective

- Productive reasoning
 - Reasoning is a key activity in designing and implementing action
 - Learning to make inferences explicit and test validity in practice is important to effective action
 - Designing activity to help others, self understand is central to initiating and sustaining action or change
Model I and Model II theories in use

<table>
<thead>
<tr>
<th>Model I</th>
<th>Model II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Define goals and try to achieve them</td>
</tr>
<tr>
<td></td>
<td>Design and manage the environment unilaterally (be persuasive, appeal to larger goals)</td>
</tr>
<tr>
<td>2</td>
<td>Maximize winning and minimize losing</td>
</tr>
<tr>
<td></td>
<td>Own and control the task (claim ownership of the task, be guardian of the definition and execution of the task)</td>
</tr>
<tr>
<td>3</td>
<td>Minimize generating or expressing negative feelings</td>
</tr>
<tr>
<td></td>
<td>Unilaterally protect yourself (speak in inferred categories with little or no directly observable data, be blind to impact on others and to incongruity; use defensive actions such as blaming, stereotyping, suppressing feelings, intellectualizing)</td>
</tr>
<tr>
<td>4</td>
<td>Be rational</td>
</tr>
<tr>
<td></td>
<td>Unilaterally protect others from being hurt (withhold information, create rules to censor information and behavior, hold private meetings)</td>
</tr>
</tbody>
</table>

Complex and important problems solved with Model I creates counterproductive consequences. Model I is learned early in life, according to Argyris and Schön.
Deterministic, probabilistic reasoning

- Management relies too much on deterministic causality
- In an environment of uncertainty and change, probabilistic reasoning is needed.
 - Probabilistic causality implies seeking of disconfirming evidence, which is hard for people to do, hence the attachment to deterministic reasoning, which needs no disconfirming evidence (because the deterministic reasoning says there is none!).
- Discovering error is the first step toward learning

![Flowchart showing single-loop and double-loop learning]

- Single-loop learning
- Double-loop learning
OK. Where are we?

- Advantage from resources is waning. Capabilities (know how) are becoming the source of competitiveness.
- Complexity abounds. Strategic action creates customer, competitor responses, creating new, unforeseen opportunities (perpetual novelty).
- Enterprises need to manage knowledge so that they can build capabilities.
- Enterprises need to manage knowledge to make and act on decisions within time frames dictated by the competitive environment. *Knowledge is intertwined with action.* Knowledge and action as two sides of the same coin.
- Knowledge management is clearly getting a handle on how to catalog, store, search and distribute information. This is *production* of knowledge.
- Knowledge management has had plenty problems with getting knowledge turned into action. This is *consumption* of knowledge.
- Consumption of knowledge is the scarce capability, not production. Consumption is intertwined with human and social factors.
- Therefore, knowledge management needs to focus hard on the complexities in the social and human factors of *knowledge consumption*.
Perfect decisions

- Have valid data
- Have valid assumptions
- Have valid reasoning process
- Have people who discuss the validity of data, assumptions and reasoning
- Use visual aids and metaphor to avoid representation and cognition problems
- Handle and weed out defensive processes correctly
- Are coherent with other decisions being made, both horizontally and vertically within the organization
- Are appropriate given the environmental challenges
- Engage the right motivational forces within the enterprise
- Engage both coerced and intrinsic behavior to advantage
- Require perfect managers
Knowledge layers

Artifact knowledge consists of all the myriads of documents and data that populate company computers and file cabinets.

Performance knowledge consists of the computer systems and documents that convey specific business performance information. This information is often tied to employee compensation and review programs.

Social knowledge consists of all the methods people use communicate outside of artifacts including gestures, symbols, language, culture, group norms. Social knowledge can involve unplanned activities and nonconscious learning.

Tacit knowledge consists of knowledge that resides private to individuals, not codified in an artifact and often not directly communicated as social knowledge.
Techniques for the social nature of knowledge

- **Bohm dialogues.** Inquiry is balanced with striving for an answer. People ask questions, make observations, but “suspend” thought. More…

- **Systematic use of metaphor.** A creative process that uses language from a variety of domains within the design process. The creative agency world has done this regularly.

- **Stories and story telling.** Find stories in literature or elsewhere that relate to the problem at hand.

- **Expressive communication.** Teams are motivated by personal or social aims; occurs in informal settings, on notes, in stories; contains humor or personal appeals; is designed to build trust.

- **Conversation.** Through conversation we create, develop, validate and share knowledge. More than intellectual endeavor, it is a social process too.

Some conclusions?

• Knowledge is hard to manage
 – Knowledge is slippery. To one who has it, it is easy to see. To those who don’t, it can be mysterious. Using conventional approaches to knowledge management makes perfect sense for those who already posses the knowledge. Managing production of knowledge is nearly valueless. Managing the consumption can be a source of advantage

• Knowledge is personal
 – We know what it is our nonconscious brain system wishes us to know. In the presence of strong emotions, learning is enhanced. We know in a way that preserves our current frameworks, sense of self. We exclude that which is inconsistent with our sense of self
 – How we learn varies. People respond differently to reading, writing, speaking, hearing, visualization, narrative, role-playing, experimentation, etc. Group interactions that give rise to capability development are hard to predict
 – Learning and stress co-occur. Learning involves emotion and a change in our sense of self which creates stress. We usually avoid learning (hence we avoid change) in proportion to the stress it creates. Some knowledge, to be acquired, will cause enormous stress.

• Knowledge is tied to culture
 – We tend to engage in communication habits formed by group norms. These group norms shape the frequency, tone and structure of these habits

• The technology issues are DWARFED by the human ones
Thank you!

What assumptions are invalid?