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ABSTRACT 

In tasks such as disease diagnosis, interpretation of evidence in criminal trials and management of security and risk data, 
people need to process conditional probabilities to make critical judgments and decisions. As dual-coding theory and the 
cognitive theory of multimedia learning (CTML) would predict, visual representations (VRs) should aid in these tasks. 
Conditional probability problems are difficult and require subjects to build a mental model of set inclusion relationships to 
solve them. Evidence from neurological research confirms the distinction between the “what” and the “where” pathways in 
visual processing and working memory.  It further confirms that mental model construction relies on the “where” pathway. 
To solve conditional probability problems, subjects need to build a mental model of the problem, which involves visual 
spatial processing (the “where” pathway). Prior research has revealed that individuals differ in their ability to perform spatial 
processing tasks. Do visualization interface designers need to take into account the nuances of spatial processing and 
individual differences for these problems?  Therefore, this study will use a 3x2 factorial design to determine the relationship 
between  subject’s spatial abilities (high or low) and representations on user performance and satisfaction (spatial VR, an 
iconic VR or pure text) and their impact on user performance and satisfaction in solving conditional probability problems. 
This study will provide guidance on how visualization interfaces should be designed to facilitate this type of task. 
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INTRODUCTION 

The medical, legal and security disciplines use Bayesian inference in many contexts that require many people who are naïve 
in Bayesian inference to make critical judgments and decisions involving disease diagnosis and treatment, interpretation of 
evidence in criminal and civil cases and the management of security data. Prior research has tangentially examined visual 
representations (VRs) in these Bayesian inference tasks involving conditional probabilities, usually to see how the VR 
facilitates teaching Bayes’ theorem or to test specific theoretical claims made in prior research. Very little research has 
compared different VRs and their impact on naïve Bayesian subjects’ performance and none have examined the role 
individual differences in spatial abilities play in this task.  This research will examine three treatments of a conditional 
probability Bayesian inference task (text, and spatial and iconic VRs) and how differences in spatial ability affect subject 
performance with each of these representations.  
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PRIOR RESEARCH 

Information visualization techniques have been applied in a variety of domains. More recently, they have been integrated into 
general business applications (Mirel, 1998), are finding its way to consumers via popular web sites (Peet’s Coffee Selector, 
SmartMoney) that use visualization techniques, and are common in popular applications such as SPSS, SAS, Microsoft 
Outlook and Adobe Photoshop (Plaisant, 2004). Citing several studies in the 1980s and the 1990s, Dull and Tegarden 
contend that visualization can improve problem-solving capabilities (1999, also Tegarden 1999). Card, Mackinlay, & 
Shneiderman (1999) propose that information visualization amplifies cognition through a knowledge crystallization process. 
Spence (2001) defines information visualization as a process by which the visual presentation of information leads to a 
mental model, or cognitive map; a cyclical process of human activity creates and recreates this mental model. Tufte (1997) 
provides a compelling argument for proper data visualization to support decision-making in his retrospective analysis of the 
documents NASA engineers used to unsuccessfully convince NASA managers to scrub the doomed Challenger launch in 
January 1986. On the day of the launch, managers and engineers discussed canceling the launch due to unusually cold 
weather. Engineers familiar with the problem had correctly anticipated the problem – the now infamous O-rings would fail in 
the cold weather – but did not make an appropriate visual presentation of the data to management. 

For Bayesian inference tasks involving processing conditional probabilities, most research has tangentially examined the use 
of VRs, usually to resolve other research problems. Over the past decade or so, researchers have engaged in a vigorous debate 
regarding the failure of subjects to properly solve Bayesian inference problems, with most of the debate concerning 
explanations for the apparent poor performance with textual presentations, including the role numeric format plays (e.g., 
natural frequencies versus probabilities, Gigerenzer & Hoffrage, 1995); the varying performance levels at boundary 
conditions of the problem: manipulations of reference class size, prevalence, sensitivity and specificity rates (Mellers and 
McGraw, 1999; Brase, 2002);  and explanations of performance based on theories of mental models (Johnson-Laird, et al., 
1999) and the use of heuristics in judgment and decision making (Kahneman, Slovic & Tversky, 1988).  

While researchers have examined the use of VRs in teaching Bayesian reasoning skills to students, very little prior research 
focused on the use of VRs in Bayesian inference for naïve subjects. The list of textual and visual representations discussed  or 
tested in the body of research includes: contingency tables (Cole,  1989), trees (Martignon & Wassner, 2002), frequency bars 
or “beam cut” diagrams (Gigerenzer & Hoffrage, 1995), Euler circles (Sloman, Over, Slovak, & Stibel, 2003), signal 
detection, probability curves (Cole, 1989), frequency grids (Cole, 1989; Gigerenzer & Hoffrage, 1995) and Bayesian boxes 
(Burns, 2004). No research to-date has examined the role individual differences in spatial abilities plays in subject 
performance with conditional probability tasks.   

One popular version of this problem, the “mammography problem,” asks subjects to infer a probability to a medical disease 
problem (Gigerenzer & Hoffrage, 1995). Prior research indicates subject accuracy is typically poor for the text-only 
probability version of the problem (Gigerenzer & Edwards, 2003; Gigerenzer & Hoffrage, 1995; Kurzenhauser & Hoffrage, 
2002; Sedlmeier, 2000; Sloman, Over, Slovak, & Stibel, 2003) and in some cases accuracy can be improved with use of 
visuals. 

The study of individual differences in cognitive abilities has a long history (Woodcock, 2002; Stanovich & West, 2000). 
Research into self reports of vividness of imagery and spatial abilities have conflicting results and explanations (Dean & 
Morris, 2003) regarding the relationship between imagery and spatial abilities. However, Kozhevnikov, Kossyln & Shephard 
(2005) and Kozhevnikov, Hegarty & Mayer (2002) provide some new insight clarifying prior conflicts. Subjects with low 
spatial abilities show an inclination towards constructing object or iconic VRs and have difficulty interpreting more abstract 
spatial VRs whereas subjects with high spatial abilities show an inclination towards constructing spatial or abstract VRs and a 
facility with interpreting more abstract spatial VRs. Imagery is not a unitary ability and may contain separate abilities 
reflecting the distinction between the “what” and the “where” pathways. The “what” pathway (the ventral stream) is crucial 
for the identification of objects and is sensitive to shape and color. The “where” pathway (the dorsal stream) is crucial for 
identifying spatial relations among objects and for visually guiding movements towards objects (Kastner & Ungerleider, 
2000). The dorsal and ventral streams are used not only for perception – processing external representations, but for mental 
imagery – constructing internal representations in the absence of external representations.   

According to dual-coding theory (Paivio, 1990), VRs should facilitate mental model construction by building referential 
connections between verbal and nonverbal representations of the same problem. These connections aid in accessing or 
encoding in long term memory. Dual coding theory, however, does not specify what kind of VR helps best (Schnotz & 
Bannert, 2003). Findings from mental models (Knauff, et al., 2003) and cognitive neuroscience research (Kossyln, Ganis & 
Thompson, 2001) suggests a distinction between a visual working memory for object imagery and a spatial working memory 
for spatial relations and mental model construction, also reflecting the “what” and the “where” pathways (Schnotz, 2005). 
Conditional and relational reasoning tasks activate regions of the brain that make up the “where” pathway of spatial 



perception and working memory (Knauff & Johnson-Laird, 2002; Ruff, C., Knauff, M., Fangmeier, T. & Spreer, J. 2003). 
Because cognitive resources are finite, spatial activities can interfere with inference tasks in the “where” pathway when these 
tasks are performed concurrently (Schnotz, 2005).  

CTML has a rich research track that explains subject learning (retention and transfer) via multimedia displays. However, no 
prior CTML research has focused on the conditional probabilities problem. Some prior CTML researched has examined the 
role of individual differences in spatial abilities on multimedia problems, but not in depth (Mayer, 2005). According to the 
individual differences principle of CTML, multimedia displays help those with low domain knowledge and those with high 
spatial abilities. Subjects with high domain knowledge can solve problems without the aid of the VR. Subjects with high 
spatial abilities can accommodate more visual information within working memory and thus can make use of the 
VR.  (Mayer, 2005). Conditional probability problems are ones in which nearly all subjects have little prior knowledge in 
solving.  

WHAT THEORETICAL MODEL PREVAILS? 

Interestingly, prior research into Bayesian inference and conditional probability problem solving has used both spatial and 
object VRs (hereafter referred to as iconic VRs) but without making a distinction between these two kinds of displays or 
measuring any linkage to differing spatial abilities. Spatial displays are more abstract representations of the relationships 
between sets of items without depicting individual items. Iconic displays use more concrete images to refer to specific items 
within a set, highlighting the use of shape and shading to make clear the distinction between kinds of items. Spatial displays 
are designed to take advantage of the “where” system and iconic displays are designed to take advantage of the “what” 
system. Figures 1 and 2 show the same conditional probability problem represented as a spatial and an iconic VR. 

To help naïve subjects in solving this problem, what should interface designers do? The literature suggests different 
approaches. 

First, as previously discussed, research into object and spatial visualizers suggests that the type of VR may matter; opposite 
their high-spatial counterparts, subjects with low spatial ability may not be able to effectively process spatial VRs 
(Kozhevnikov, et al., 2005). High spatial subjects should do well with spatial VRs and low spatial subjects may do better 
with less abstract iconic VRs. Mental models research suggests that a spatial VR showing the relationships between the 
concepts would help reasoning and representations that contain irrelevant imagery details (iconic VRs), should impede 
reasoning (Knauff & Johnson-Laird, 2002).  

However, the type of conditional probability problems used in our study is difficult and takes subjects several minutes to 
solve, despite the fact that it only involves two numbers and two basic mathematical operations (addition and division)., e.g., 
A / (A+B). Since subjects struggle to find a relevant strategy from long term memory, perhaps the type of VR should aid in 
referential processing between the verbal (text) and the visual coding. Dual coding theory suggests that a display with more 
concrete concepts would elicit better referential processing between the two codings and long-term memory. Also, if visual 
working memory is composed of two distinct parts (the “what” and the “where” system) that are used to both solve the 
problem (build an internal representation or mental model) and perceive the problem (by scanning the external representation 
and maintaining its properties in either visual system), should the display be mindful of cognitive overload of the “where” 
system? This suggests a second approach. An iconic VR should facilitate mental model construction without interfering with 
that construction. 
HYPOTHESES 

Based on dual-coding theory and mental models research, while working with a spatial VR (an external representation) on a 
conditional probability problem, subjects must visually process explicit relations between concepts, thus activating the 
“where” pathway. Subjects need to maintain or rebuild this representation in visual working memory. While working with an 
iconic VR, subjects must process shape and texture more than spatial relations, thus activating the “what” pathway. Iconic 
VRs, being more concrete and less abstract, are more likely to facilitate referential processing which is needed for this 
difficult problem. With either spatial or iconic VRs, during mental model construction, subjects must alternate between 
constructing a mental model (an internal representation) of the problem and examining the VR (the external representation). 
Since a spatial VR must now compete for limited cognitive resources, in this case the “where” pathway, a spatial VR should 
be inferior to an iconic VR.  Therefore, we hypothesize the following effects of the visualization of conditional probability 
problems: 

H1. VRs will generate more correct answers than textual representations  

H2. Iconic VRs will generate more correct answers than spatial VRs 



H3. VRs will result in a higher level of user satisfaction than textual representations. 

H4. Iconic VRs will result in a higher level of satisfaction than spatial VRs 

Based on the CTML research, subjects with high spatial ability, should perform better in all forms of representation in 
solving conditional probability problems (text, spatial or iconic VRs) and VRs (spatial or iconic) should benefit subjects with 
high spatial ability more so than subjects with lower spatial ability.  Therefore, we hypothesize that:  

H5. Users with higher spatial abilities generate more correct answers than subjects with lower spatial abilities under all 
three forms of representation (text, spatial or iconic VRs). 

H6. VRs will have stronger effects for those users with high spatial abilities than users with low spatial ability. 

Hypothesis H1, H2, H3 and H4 are supported by dual coding theory and mental models research.  Hypotheses H2 and 
H4 are predicated on the split between “what” and “where” processing in visual working memory and use of the “where” 
pathway during mental model construction. Hypothesis H5 and H6 are supported in CTML research; specifically the 
individual differences principle. 

EXPERIMENT DESIGN  

This research will use a between-subjects 2X3 factorial design to test the above hypotheses:  

  Representation 
Spatial ability Iconic Spatial Text 
High       
Low       

  

There are two independent variables—spatial ability and representation.  Spatial ability will be measured by the card rotation 
and paper folding tests from Ekstrom, French & Hardon (1976).  High and low level of spatial ability will be determined by a 
median split.  Representation will be defined by three forms of presenting conditional probability problems – textual, iconic 
visual, and spatial visual.  The conditional probability problems use frequency formats and a ‘short’ menu (Gigerenzer & 
Hoffrage, 1995), which facilitate more normative answers than more complicated versions of these problems. In keeping with 
CTML design principles, the VRs are presented in incremental, integrated displays in which the user can control the pace of 
the problem description, which is presented on the same screen as the visual treatment.  

Dependent variables are user performance and satisfaction.  Performance is measured by accuracy (the number of correct 
answers).  User satisfaction is measured by a 14-item questionnaire based to Davis’ (1989) technology acceptance model 
(TAM). In this model, perceived ease of use and perceived usefulness are two key determinants on user adoption of 
technology. 

A total of 200 subjects will be recruited from a Midwest university, classified as subjects of high and low spatial ability and 
randomly assigned to each of the three treatments. Subjects will fill out a background questionnaire regarding their education 
level, prior skill in probabilities, age, gender and any visual impairment. Subjects will then complete a timed test of card 
rotation and paper folding (Ekstrom, et al., 1976). Afterwards, they will receive a brief explanation about the task and also 
complete a battery of six conditional probability problems and a post-test survey designed to measure satisfaction.  

We will use a “write-aloud” process tracing protocol (Gigerenzer & Hoffrage, 1995), in which the subjects’ recorded notes, 
diagrams and calculations will be analyzed. Consistent with Gigerenzer and Hoffrage (1995), scoring of the correct answers 
follows a strict rounding criteria which allows for answers to be rounded up or down to the nearest integer. The combination 
of the rounding criteria and the process tracing data is used to score a correct answer. This eliminates math errors from 
disqualifying normatively correct processes.  

IMPLICATIONS 

The implications for this research are important. Information and decision support systems may need a broader repertoire of 
visualization techniques to be able to improve performance in naïve subjects that takes into consideration the task demands 
for these kinds of problems. This research may suggest that VRs may facilitate other difficult judgment and decision 
problems, provided designers are mindful of the cognitive limitations within the “what” and the “where” pathways of visual 
processing.  Although CTML is a theory that explains subject learning (retention and transfer) with multimedia displays, 
because of its inclusion of theories of memory and cognition, it may be robust enough to extend to non-learning 
environments and contribute to the rich and conflicting research into judgment and decision making (JDM). Finally, we hope 



this research can clarify how subjects perform with VRs in these tasks. User interface designers may find that for difficult 
tasks like these, representing a problem visually in spatial external representation may actually interfere with the mental 
model construction in working memory and impede reasoning.  
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Figure 1. A spatial VR 

 
Figure 2. An iconic VR 
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