

Software Quality and Coupling and Cohesion

12/12/1993
By Vince Kellen
vjk@kellen.net

http://www.kellen.net

We all know how to write clean, elegant, efficient code, right? After all, if we didn't we wouldn't be the great
programmers we think we are. Oh yes, you'd also gladly let others review your code, rip it apart and endure their
back-seat driving as they second-guess all the hundreds of small but important decisions you made in your code. Of
course.

The previous passage was written tongue-in-cheek. None of us really enjoys getting code mercilessly critiqued, and
most of us believe that we really are competent PAL programmers. Or at least they we are improving our skills. So,
naturally we avoid being closely reviewed.

If you're a serious programmer, you should gleefully welcome such a review. Why? Because over the years the
software industry has accumulated bits of wisdom that give us clues how to write solid, maintainable code. Taking a
hard, critical look at your own code and applying these pearls of wisdom can help make order out of chaos. Two
such nuggets are the concepts of coupling and cohesion.

Help Wanted

Coupling and cohesion were discussed at great length by Larry Constantine and Edward Yourdon in their 1976
landmark book, Structured Design. Since these concepts have been tied to structured programming, in this object-
oriented day it seems that many programmers are forgetting what they mean. In many ways, the concepts are still
extremely important.

We will tackle cohesion first, since it is a bit easier to comprehend. Cohesion refers to how clearly-defined a
particular module or procedure is. A module with high cohesion does one or a few things exceedingly well. Let's use
a job description as an example. Suppose you placed the following ad:

Wanted: Programmer with solid skills in the following areas: System analysis, design, testing
methodologies, EDI, software auditing, COBOL, BASIC, PAL, SmallTalk and C++ required. Strong real-
time data acquisition skills, scientific applications experience and accounting knowledge a must. Candidates
must be experienced, energetic, willing to work long hours, be able to lead groups of programmers, get
along with others and have the patience of Job.

How many qualified candidates would you get? And if you found one how long would he or she last? How many
skills can one person excel in at one time? If I had that job, after a month or so I'd probably be wondering what my
name is.

If a particular module is responsible for a diverse set of tasks, chances are the module will be, like our hapless
candidate, a mess. So what constitutes a module which exhibits poor cohesion? I offer code listing 1 for your
consideration.

Code Listing 1. An example of poor cohesion

; -
; Post Payr ol l . l () - Post The Payr ol l Dat a
; I nput : Voi d
; Ret ur n: TRUE - Payr ol l Post ed
; FALSE - Post i ng Cancel l ed
; -
Pr oc CLOSED Post Payr ol l . l ()

mailto:vjk@kellen.net
http://www.kellen.net/

 UseVar s Aut oLi b,
 Def aul t PayPer i od. n,
 Def aul t Di f f . n,
 Def aul t Acct Num. a,
 Moni t or Type. a,
 Appl i cat i onRev. a,
 Devel oper Mode. l ,
 Mi nWage. n,
 PWor d. a

 Pr i vat e Pr ocName. a,
 Fi el dDat e. y,
 DOW. y,
 Week. y,
 Ok. l ,
 Ti t l e. a,
 Pr ompt . a,
 Per i od,
 S. d,
 E. d,
 W1,
 W2,
 W3,
 W4,
 D,
 X,
 Y,
 Ret . l ,
 WeekDat e. r

 Pr ocName. a = " Post Payr ol l . l "
 Ret . l = FALSE
 MaxPer . n = CMax(" PayPer " , " Per i od #") - 2

 SHOWDI ALOG " Post Payr ol l Dat a"
 @7, 15 HEI GHT 14 WI DTH 51

 ; Pai nt PAL_Fr ame_Begi n
 FRAME SI NGLE FROM 1, 1 TO 7, 47
 PAI NTCANVAS BORDER ATTRI BUTE 65 1, 1, 7, 47
 ; Pai nt PAL_Fr ame_End

 ; Pai nt PAL_St at i c_Text _Begi n
 PAI NTCANVAS FI LL " " ATTRI BUTE 79 2, 2, 6, 46
 @2, 2
 ?? " Payr ol l Post i ng shoul d not be done unt i l ALL"
 @3, 2
 ?? " of t he Dat a has been ent er ed. I t needs t o be"
 @4, 2
 ?? " done pr i or t o gener at i ng t he Payr ol l Repor t "
 @5, 2
 ?? " or Expor t i ng Dat a t o Cougar . "
 @6, 2
 ?? " "
 PAI NTCANVAS ATTRI BUTE 79 2, 2, 6, 46
 ; Pai nt PAL_St at i c_Text _End

 PUSHBUTTON @9, 1 WI DTH 17
 " ~O~k - Post Dat a"
 OK

 DEFAULT
 VALUE TRUE
 TAG " "
 TO Ok. l

 PUSHBUTTON @9, 23 WI DTH 18
 " ~C~ancel Post i ng"
 CANCEL
 VALUE FALSE
 TAG " "
 TO Ok. l
 ENDDI ALOG

 I f Ret Val Then
 Cl ear Al l

 Ti t l e. a = " Weekl y Payr ol l Pr ocessi ng"
 Pr ompt . a = " Ent er Pay Per i od: "

 Per i od = Get PayPer i od. n(Ti t l e. a, Pr ompt . a, Def aul t PayPer i od. n, 1,
MaxPer . n)
 I f Per i od = 0 Then
 Ret ur n FALSE
 EndI f

 ChangePayPer i od. u(Per i od, FALSE)

 Message " PROCESSI NG PAYHI ST FOR PERI OD " + St r Val (Per i od) + "
PLEASE WAI T. "

 DynAr r ay Fi el dDat e. y[]
 DynAr r ay DOW. y[]
 DynAr r ay Week. y[]
 Ar r ay WeekDat e. r [4]

 WeekDat e. r [1] = Bl ankDat e()
 WeekDat e. r [2] = Bl ankDat e()
 WeekDat e. r [3] = Bl ankDat e()
 WeekDat e. r [4] = Bl ankDat e()

 I F NOT Del et eBadRecor ds. l () Then
 Beep
 Message " WARNI NG: Excl usi ve Access t o TI ME i s r equi r ed"
 Sl eep 5000
 Ret ur n
 EndI f

 Cl ear Quer i es. u()
 Menu { Ask} { Payhi st }
 " FAST DELETE"
 MoveTo [Per i od #]
 TypeI n St r Val (Per i od)
 Do_I t !

 Cl ear Quer i es. u()
 Message " PROCESSI NG PAYPER PLEASE WAI T. "

 Quer y

 Payper | PERI OD # | START DATE | END DATE |
 | Check ~PERI OD | Check | Check |

 EndQuer y

 Do_I t !

 S. d = [ANSWER- >START DATE]
 E. d = [ANSWER- >END DATE]

 Message " PROCESSI NG TI ME FOR PERI OD " + St r Val (Per i od) + " PLEASE
WAI T. "

 Quer y

 Ti me | PERI OD # | EMPLOYEE # | START DATE | END DATE |
 | Check ~PERI OD | Check | Check | Check |

 Ti me | NDAYS |
 | Check |

 Ti me | TI ME 1 | TI ME 2 |
 | CALC SUM AS TI ME 1 | CALC SUM AS TI ME 2 |

 Endquer y

 Do_I t !

 Rename " Answer " " PaySums"
 Cl ear Quer i es. u()

 Quer y

 Ti me | Per i od # | Empl oyee # |
 | Check ~PERI OD | Check |

 Ti me | Act ual Pay Rat e | Ti me Tot al |
 | Check _R | Check _H, cal c _H * _R As Base Pay |

 Endquer y

 Do_I t !

 Rename " Answer " " PayHour s"

 Cl ear Quer i es. u()

 Message " Cal cul at i ng Composi t e Pay f or Per i od " + St r Val (Per i od) + "
. . . . PLEASE WAI T. "

 Quer y

 Payhour s | PERI OD # | EMPLOYEE # | TI ME TOTAL |
 | Check | Check | Cal c Sum As Tot al Hour s |

 Payhour s | ACTUAL PAY RATE | Base Pay |
 | Cal c Sum As Composi t e Pay Rat e | Cal c Sum As Base Pay |

 Endquer y

 Do_I t !

 Rename " Answer " " CompPay"

 Cl ear Al l

 Quer y

 Comppay | Tot al Hour s | Composi t e Pay Rat e | Base Pay |
 | _h | changet o _p / _h | _p |

 Endquer y
 Do_I t !

 Cl ear Al l

 Del et eTabl e. u(" PayHour s") ; Del et e t empor ar y t abl e

 I f NOT Comput ePayHour s. l () Then
 Beep
 Message " ERROR: Coul d NOT Comput e Payr ol l Hour s - Cancel l i ng Post i ng"
 Sl eep 5000
 Ret ur n FALSE
 EndI f
 Cl ear Al l

 ; Del et e any Exi st i ng PAY r ecor ds f or t hi s per i od.

 Message " CLEARI NG EXPORT FI LES PLEASE WAI T. "

 I f NOT Empt yTabl e. l (" Pay") Then
 Beep
 Message " ERROR: PAY Tabl e Does NOT Exi st - Cancel l i ng Post i ng"
 Sl eep 5000
 Ret ur n
 EndI f

 Menu { Ask} { Pay}

 ; Cr eat e PAY r ecor ds f r om cor r espondi ng PAYHI ST r ecor ds f or t hi s per i od.

 MoveTo [Pay(Q) - > Per i od #]
 Del
 Ct r l Home
 " FAST I NSERT"
 MoveTo [Per i od #]
 Exampl e " PERNO"
 MoveTo [Empl oyee #]
 Exampl e " EMPNO"
 MoveTo [T1]
 Exampl e " T1"
 MoveTo [T2]
 Exampl e " T2"

 Menu { Ask} { PayHi st }
 Ct r l Home
 MoveTo [Per i od #]
 Exampl e " PERNO, ~PERI OD"
 MoveTo [Empl oyee #]
 Exampl e " EMPNO"
 MoveTo [T1]
 Exampl e " T1"

 MoveTo [T2]
 Exampl e " T2"

 Do_I t !

 Cl ear Al l
 Quer y

 Payhi st | Empl oyee # | Per i od # |
 | _e | _n |

 Payhi st | Composi t e Pay Rat e |
 | changet o _p |

 Comppay | Per i od # | Empl oyee # | Composi t e Pay Rat e |
 | _n | _e | _p |

 Endquer y
 Do_I t !
 Cl ear Al l

 Del et eTabl e. u(" CompPay") ; Del et e t empor ar y t abl e
 Message " PREPARI NG PAYROLL FOR EXPORT PLEASE WAI T"

 I f LockSt at us(" Pay" , " ANY") = 0
 AND LockSt at us(" Emp2" , " ANY") = 0
 AND LockSt at us(" PayHi st " , " ANY") = 0 Then
 Lock " PayHi st " FL, " Emp2" FL, " Pay" FL
 I f Ret Val Then
 Ret . l = TRUE
 Vi ew " PAYHI ST"
 Vi ew " EMP2"
 Edi t " PAY"
 Home
 Scan For [Per i od #] = PERI OD
 CopyToAr r ay PayDat a. r
 Message " Comput i ng Pay f or Empl oyee #: " + For mat (" w10, al " ,
PayDat a. r [" Empl oyee #"])

 Empl oyeePayRat e. n = 4. 25

 MoveTo " EMP2"
 MoveTo [EMPLOYEE NUMBER]
 Locat e PayDat a. r [" Empl oyee #"]
 I f NOT Ret Val Then ; No Mat chi ng Empl oyee Mast er - Ski p t hi s
One
 Empl oyeePayRat e. n = 0
 MoveTo " Pay"
 Loop
 EndI f

 MoveTo " PayHi st "
 MoveTo [Per i od #]
 Locat e PERI OD
 I f NOT Ret Val Then ; No Mat chi ng Per i od Dat a - Cancel
Pr ocessi ng
 Ret . l = FALSE
 Qui t Loop
 EndI f
 Locat e PayDat a. r [" Empl oyee #"] , PERI OD

 I f NOT Ret Val Then ; No Mat chi ng Empl oyee Pay Hi st or y - Ski p
t hi s One
 MoveTo " Pay"
 Empl oyeePayRat e. n = 0
 Loop
 El se
 Empl oyeePayRat e. n = [Composi t e Pay Rat e]
 MoveTo " Pay"
 EndI f

 [t 1$] = Empl oyeePayRat e. n * [T1]
 [t 2$] = Empl oyeePayRat e. n * [T2]

 [TOTAL T] = [T1] + [T2]
 EndScan
 Do_I t !
 UnLock " PayHi st " FL, " Emp2" FL, " Pay" FL
 El se
 Ret . l = FALSE
 EndI f
 El se
 Beep
 Message " ERROR: Excl usi ve Access t o PAYHI ST, EMP2, and PAY r equi r ed"
 Sl eep 2000
 Ret . l = FALSE
 EndI f
 EndI f

 Ret ur n Ret . l
EndPr oc ; Post Payr ol l . l

As you can see, the first sign, usually, that a module exhibits poor cohesion is its length. The longer a programmer
rambles on in a module, the drearier and less comprehensible the module becomes. The module lacks zing, punch,
pizzazz, which of course, is a good thing for keeping those who maintain the code awake. The module above is
performing too many different things: getting input from the user (on whether to continue or not, messaging the user
on error conditions, performing several queries and setting up the query images and locking tables. Each of these
tasks can be delegated down in the hierarchy to a specialized module. This would improve the module's
cohesiveness.

Now of course, there are exceptions to the rule. It is possible for a lengthy module to still have a high degree of
cohesion, provided the module excels in one or two things only. For example, some modules contain code which
executes a series of commands or a series of evaluations. The latter case is especially common in PAL, particularly
when the module needs to evaluate a list of menu choices or a list of events. Code listing 2 shows such a module.

Code Listing 2. A Long Switch Case module
; -
; Thi s pr oc pr ocesses t he user ' s menu sel ect i on
; -
pr oc PROCESS_MEMO_MENU(CHOI CE)
 pr i vat e RV
 RV = t r ue

 swi t ch
 case CHOI CE = " M- Read" :
 MEMO_READ()
 case CHOI CE = " M- Wr i t e" :
 MEMO_WRI TE()
 case CHOI CE = " M- Bl ock" :
 MEMO_BLOCK()

 case CHOI CE = " M- Save" :
 SHOWMSG(" Savi ng memo. . . " , f al se)
 Menu { Fi l e} { Save}
 SHOWMSG(" Memo saved" , f al se)
 case CHOI CE = " M- Pr i nt " :
 SHOWMSG(" Pr i nt i ng memo. . . " , f al se)
 Menu { Fi l e} { Pr i nt }
 pr i nt " \ f "
 CLEARMSG()
 case CHOI CE = " M- Copy" :
 CLI P_COPY()
 case CHOI CE = " M- Append" :
 CLI P_APPEND()
 case CHOI CE = " M- Past e" :
 CLI P_PASTE()
 case CHOI CE = " M- Got o" :
 MEMO_GOTO()
 case CHOI CE = " M- Show" :
 MEMO_SHOW_CLI P()
 case CHOI CE = " M- Sear ch" :
 MEMO_SEARCH()
 case CHOI CE = " M- Next " :
 MEMO_NEXT()
 case CHOI CE = " M- Repl ace" :
 MEMO_REPLACE()
 case CHOI CE = " M- I ndent On" :
 menu { Opt i ons} { Aut oI ndent } { Set }
 SHOWMSG(" Aut oI ndent i s set " , t r ue)
 case CHOI CE = " M- I ndent Of f " :
 menu { Opt i ons} { Aut oI ndent } { Cl ear }
 SHOWMSG(" Aut oI ndent i s now of f " , t r ue)
 case CHOI CE = " M- Wr apOn" :
 menu { Opt i ons} { Wor dWr ap} { Set }
 SHOWMSG(" Wor dWr ap i s now set " , t r ue)
 case CHOI CE = " M- Wr apOf f " :
 menu { Opt i ons} { Wor dWr ap} { Cl ear }
 SHOWMSG(" Wor dWr ap i s now of f " , t r ue)
 case CHOI CE = " M- CaseOn" :
 menu { Opt i ons} { CaseSensi t i ve} { Set }
 SHOWMSG(" CaseSensi t i v i t y i s now set " , t r ue)
 case CHOI CE = " M- CaseOf f " :
 menu { Opt i ons} { CaseSensi t i ve} { Cl ear }
 SHOWMSG(" CaseSensi t i v i t y i s now of f " , t r ue)
 case CHOI CE = " M- Cancel Yes" :
 menu { Cancel } { Yes}
 RV = " Cancel "
 case CHOI CE = " M- Exi t " :
 do_i t !
 RV = " Exi t "
 ot her wi se :

 endswi t ch

 echo nor mal
 r et ur n RV

endpr oc

In this example, a long series of case statements evaluate the user's menu choice. Since the module does exactly one
thing, evaluate a menu choice, it qualifies as a highly cohesive module.

Now, we can shrink this module down somewhat by using a dynarray to process the menu choices, as shown in code
listing 3. While this makes examining the part of the module which actually does the work (the switch-case
statement) easier because it is shorter, the cohesion has not been reduced drastically, only the size of part of the
module. The reason is that the module still does the exact same thing, no more, no less. In fact, some people can
argue that by using a Dynarray to hold switch-case commands, you are actually trading a long switch-case statement
for a long dynarray declaration. In essence, you are trading a control structure for a data structure. Less experienced
programmers often perceive data structures used in lieu of control structures as harder to comprehend, and hence,
maintain.

Code Listing 3. Using a Dynarray to Replace a long Switch/Case Statement
; -
; t hi s pr oc st ar t s t he appl i cat i on up
; -
pr oc MAI N_MENU()
 pr i vat e CHOI CE, ; user ' s mai n menu choi ce
 EXI T_CHOI CE, ; var i abl e hol di ng user ' s exi t met hod
 APP_PROCS ; dynar r ay hol di ng pr oc names t o execut e

 dynar r ay APP_PROCS[]

 ; i ni t i al i ze t he appl i cat i on and l oad t he APP_PROCS dynar r ay
 i f STARTUP_APP(APP_PROCS) <> t r ue t hen
 r et ur n " Par adox"
 endi f

 whi l e t r ue

 ; di spl ay t he mai n menu and enabl e/ di sabl e menu i t ems
 MAI N_PULLDOWN()

 ; get t he user ' s menu sel ect i on
 get menusel ect i on t o CHOI CE

 ; c l ear t he pul l down
 showpul l down
 endmenu
 pr ompt " "

 swi t ch
 case CHOI CE = " Esc" :
 l oop
 case CHOI CE = " EXI T" :
 EXI T_CHOI CE = GET_EXI T_CHOI CE()
 i f EXI T_CHOI CE = " Par adox" or EXI T_CHOI CE = " DOS" t hen
 qui t l oop
 endi f
 ot her wi se :
 ; execut e t he pr ocedur e cont ai ned i n APP_PROCS[]
 execpr oc APP_PROCS[CHOI CE]
 endswi t ch

 endwhi l e

 SHUTDOWN_APP()
 r et ur n EXI T_CHOI CE

endpr oc

So how do you go about building highly cohesive modules?

Well, in PAL programs, it is a good idea to decompose the programming problem into a hierarchy of cooperating
procedures (see figure 4). Clearly identify the job description for each module. Try to keep each module as painfully
ignorant as possible. After all, most other programmers aren't the genius you are. In fact, tomorrow you may not be
the genius you are today. How many times have you looked at your own code, written months ago, baffled by what it
does? If you clearly identify a narrow job description for each procedure, the chances for confusion later are less.

Figure 1. Module Hierarchy

To help you in writing module job descriptions, it might be helpful to keep in mind the following Rule of Module
Intelligence (just made up, of course):

Bosses are ignorant. Workers are smart.

Just like in real life (ahem), endowing your various modules with different skill helps keep cohesion high. For
example, the higher you go in a module hierarchy, the less nitty-gritty work the module actually does. In fact, higher
level modules usually bark out commands, as the module in listing 4 does.

Code Listing 4. High-Level Module
pr ocedur e BI G_BOSS()

 i f UNI VERSE_CREATE_THYSELF() = f al se t hen
 r et ur n f al se
 endi f

 PROCESS_MAI N_MENU_SELECTI ON()

 i f UNI VERSE_GO_AWAY() = f al se t hen
 SHOW_MESSAGE(" Somet hi ng bad happened dur i ng uni ver se shut - down")
 r et ur n f al se
 endi f

 r et ur n t r ue

endpr oc

In this example, BIG_BOSS() initializes the application, calls the procedure which displays the main menu and
handles the user's selection and then shuts the application down. This module does very little except issue a few key
commands to subordinates.

Main procedures like BIG_BOSS() are fairly easy to write without losing cohesion. The real challenge is writing in
lower-level procedures properly. Often, programmers use the procedure they are working on as a sort of scratch pad
to explore possible alternatives to a solution. And often, a less experienced programmer will try to patch-up the
scratch pad or cobble together the random bits and pieces of code into a working single module.

This can be dangerous.

 If you find yourself exploring implementation alternatives in this ad-hoc manner, I don't want to discourage you.
Just remember that when you are done experimenting, take a good hard look at your module and examine its
cohesion. Most modules written after a long experimentation phase are ripe for problems. Why? First, the module
was not trivial because it required some thought. Second, non-trivial modules are non-trivial because they try to do
too much for a person to comprehend at one time. Our mission in life is to make all modules trivial. When all
modules are trivial, cohesion is high and maintenance is easy.

After a scratch-pad session, I often stand back, take a look at the module, and break it up into a group of highly
cohesive procedures, even if this can potentially break a working module. When it comes to programming cohesive,
maintainable code, the old adage if it ain't broke, don't fix it does not apply. In fact, if anyone tells me that about a
particular module, I get suspicious and find myself inevitable re-writing it so that it is understandable.

These lower-level modules which perform the important work take time to craft properly. As I write these modules, I
make sure that each worker-bee procedure is specialized. That is, the module, even if somewhat complex, does one
thing and one thing only. If the module has a simple job description, the chances of it doing the job exceedingly well
increases.

Quit Talking!

The other issue, coupling, refers to what information needs to be communicated between modules.

In real life jobs, most bosses prefer to have workers that can perform their duties without excessive communication,
either spurious or required. The more self-reliant the worker, the less maintenance the worker will require.

In programming in PAL, procedures need to communicate data between themselves. In fact, communicating data
between modules is necessary to write anything other than a stupid little program, such as a "Hello world" program.
Procedures transform data for the user. To do that, they must share data.

Writing modules with low coupling is desirable. Why? Because a module with low coupling is more independent and
usually less complex because there is less data for the module to work on. The less a module has to know about data
in other modules, or in any other part of the application, the better.

In PAL, procedures can share data via the following mechanisms:

1) Global variables
2) Argument lists
3) Tables
4) Text files, binary files

Let's discuss these in order. Global variables are perhaps the most common and pernicious source of coupling
problems. If you carry around lots of global variables then at any given time a particular procedure can know about a
variable. In reality, most modules can pretend that the global variables don't exist. In other words, a particular
procedure may not need to know about a variable.

For this reason, if you have declared 25 global variables in the main procedure and procedure A() needs to know
about three of the global variables, then only three variables are coupled to procedure A().

On the other hand, since global variables are not explicitly passed from the main procedure to procedure A(), then it
may become unclear exactly what global variables procedure A() needs. In order to find out, you will have to read all
the lines of code in A().

From this example you can see that it is not enough to have low coupling, but to have explicitly stated coupling.
Global variables are not explicitly stated. Although you can list out the global variables a procedure needs as part of
a comment above or just below the procedure declaration, the Paradox compiler can't prevent incorrect access to
global variables.

For this reason it is a good idea to limit the number of global variables and institute rigorous procedures as to how
you plan on accessing and updating global variables.

Passing variables from one procedure to another with an argument list (sometimes called a parameter list) is a better
approach. With an argument list, the level of coupling is explicit and it is enforced by the runtime environment.
However, if you declare module A() as it is shown below, you have a problem:

Procedure A(X,Y,W,H, Color, Amount, StatusFlag, isActual, EventHandler)

This procedure has nine arguments, which is a rather lengthy list. Let's take a closer look at the parameters in this
fictitious procedure. StatusFlag is a variable which will cause A() to traverse a different path in the if statements
inside A(). EventHandler is the name of a procedure which is executed whenever certain events occur. X,Y,W,H
refer to the X and Y coordinates for the upper left-most corner of the display window and W and H are the window
width and height. Color is the window color, Amount is a number which is displayed in the window and isActual is
a flag which tells whether the number is an actual number or a budget or fake number.

As you can see from this parameter list, procedure A() is probably involved with the following tasks:

1) Setting window properties
2) Properly displaying user-defined data
3) Calling another procedure which handles certain events while the window is active.

Long and involved argument lists usually indicate trouble. It's much better form to replace this one-module-does-it-
all procedure into three smaller procedures, one for each task listed above.

Tables, Tables Everywhere

In Paradox for DOS, as in most database applications, programmers use tables to store data that needs to hang
around for a while. Paycheck information needs to be stored and reported on and it would be nice to keep several
quarters of information on hand. This fact is so obvious that we tend to think of tables as the whole enchilada when it
comes application development and forget that tables interact with source code in troublesome ways.

In Paradox for DOS, it is very common to have a table on the workspace while a series of very cohesive and
apparently loosely coupled procedures work on the data in the table. From a purely programming perspective,
working this way is rather odd, because the table represents a huge amount of global data. In fact, if you substitute
the words global variables for Paradox fields in table, you can see that tables can frustrate attempts at reducing
complexity.

Since Paradox for DOS language constructs operate on tables on an interactive workspace, this form of coupling is
more obscure than a formal argument list. The reason is that you don't formally declare what fields or tables your
procedure will require. Instead your simple use the VIEW command to put the table on the workspace.

Tables introduce several coupling problems. It is possible to lose track of what tables are on the workspace or in
what order they were placed on the workspace. When this happens, the active procedure may not be able to see the
fields it needs to see. I have seen several difficult bugs arise because the PAL programmer forgot to clear a table
from the workspace, forgot to put it on the workspace, accidentally cleared it from the workspace or got confused as
to the actual order of tables on the workspace.

Programmers can also get clever in accessing fields and tables on the workspace. They can write some short and
tricky algorithms that refer to images by their number, rely on specific orderings of images or use Paradox keystroke
commands such as DOWNIMAGE rather than an explicit MOVETO. Not only do tables increase the level of
coupling, the ways the table are accessed can cause problems.

And since tables tend to have several if not many fields, the amount of coupling is much higher than the amount of
coupling created by parameter lists and even global variables. For this reason, it is a good idea to follow some
rigorous rules about workspace management. Here are some suggestions:

1. Clean up after yourself. Don't leave unneeded tables on the workspace.
2. Assume that other procedures forgot rule number 1 and verify the workspace's status.
3. Access tables and fields explicitly by using the table and field name rather than cursor movement commands

such as RIGHT, LEFT, DOWN or UP.
4. Maintain rigorous, strict and consistent workspace management rules. Similar procedures should access the

workspace in similar ways.
5. Generic coding techniques which violate the above rules are not forbidden. Just be prepared to spend lots more

time on testing and debugging these procedures..

Other minor forms of coupling are text files and binary files. Since these files represent data that needs to be shared
and since these files have far less significant structures than tables, the level of coupling these files introduce is far
less than tables and global variables.

Variable Span and Life

Although not directly related to coupling and cohesion, but one that PAL programmers often forget is the concept of
variable span and variable life. The average span of a variable is the average distance, in lines of code, between lines
of code which refer to a variable. In the following procedure, variable X is used in one half of the procedure's lines
of code, so it's average span is 1.

procedure COUNT_EM()
private X

 view "ORDERS"
 X=1
 scan
 X=X+1
 endscan

 ? X

endproc

A low average span is good, because that means that a variable is used frequently in a procedure. This indicates that
the procedure's cohesion is high. If the variable span was high, say 30 lines of code, that would beg a question: What
was going on in those 30 lines of code? Did those 30 lines of code have anything to do with the variable. Probably
not. If this is the case than the procedure's cohesion is not very high.

Variable life refers to the number of lines of code between the first reference to a variable and the last reference to it.
The larger this number is, the more lines of code the programmer has to keep in his or her head as he or she tracks

the variable through the procedure. If a variable's life is short, the procedure is probably short and hence, probably
highly cohesive.

Visual Programming

Although the concepts of coupling and cohesion grew out of structured programming research and discussions in the
70's, they should not be confined to structured programming only. In this day and age of object-oriented
programming and reusable code engineering, some people conclude that structured programming concepts don't
apply.

Nothing could be further from the truth.

I like to look at coupling and cohesion in terms of visual programming metaphors. Two figures represent two
different modules, Figure 2 is a pictoral representation of a loosely-coupled, highly cohesive program. Figure 3 is a
representation of a highly-coupled, loosely cohesive program. Which figure is easier to discern and remember?

Figure 2. Loosely-Coupled, Highly Cohesive

Figure 3. Highly-Coupled, Loosely Cohesive

It sometimes helps to look at these old problems in a new light -- a visual programming light. Since human visual
processing capabilities far exceed abstract reasoning capabilities, framing a problem into purely visual terms
increases comprehension of the problem. In addition, if a visual metaphor is used to describe a problem, abstract
reasoning about the problem is enhanced. A visual metaphor frees us from messy details and lets us abstract the
problem even further.

To me, coupling, cohesion, variable span and life can be discussed in purely visual terms. The problem can be stated
this way:

1. Smaller procedures are easier to understand because they contain less visual and hence logical information.

This taxes the programmer's brain less.

2. The more information about a program that is immediately available to the programmer's eye at one time, the

easier the program is to understand.

3. The more order and structure inherent in the information about a program, the easier it is to understand. The

more random or chaotic the information in a program, the more difficult it is to understand.

In the case of poorly cohesive programs, the information in the procedure may appear haphazard and unstructured to
another programmer, hence the program is harder to understand. In much the same way it is harder for us to
understand what is going on in a picture the more the picture contains random and haphazard features. Driving home
at night in a heavy rainstorm is harder than driving home on a clear, sunny day. An obscure or complicated job
description is harder to understand than a succinct and precise job description.

In the case of highly coupled programs, the amount of information in the program might be too high, as in the case of
long parameter lists. Or, some information may not be immediately visible to the programmer, as in the case of
global variables and tables.

If you think about programming in terms of information that is immediately and easily discernible to the
programmer, it becomes clear that programs occupy "space" in programmers' minds. The larger and more chaotic
that space, the more difficult it is to understand the program. For Paradox for DOS programmers, managing this
"cognitive space" is extremely important.

For ObjectPAL programmers, the new visually-based metaphors in Paradox for Windows "shrink" the cognitive
space for us by giving us visual objects rather than abstract ones and by applying a new, concrete order to the
problem domain, increasing it's structure. But that is another story.

